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1 Minimization on an interval

Let f : R → R be twice continuously differentiable. Consider the constrained minimization problem

min
x∈R

f(x) subject to − 1 ≤ x ≤ 1. (P)

Alternatively, consider the unconstrained minimization problem

min
y∈R

g(y) where g = f ◦ sin . (Q)

1. Argue that (P) has at least one global minimizer.

Answer. A continuous function on a compact domain has at least one global minimizer. ■

2. Argue that the optimal values of (P) and (Q) are equal.

Answer. the lift sin : R → [−1, 1] is surjective, so the range of values attained by g is the same as for f , since
g(R) = f(sin(R)) = f([−1, 1]). ■

A second-order critical (SOC) point for the unconstrained minimization problem (Q) is a point y ∈ R such that
g′(y) = 0 and g′′(y) ≥ 0.

3. Argue carefully that if y is second-order critical for (Q) then x = sin(y) is stationary for (P).

Answer. A point y ∈ R is SOC for (Q) if g′(y) = 0 and g′′(y) ≥ 0. We have that

g′(y) =
d

dy
f(sin(y)) = f ′(sin(y)) cos(y) (1)

g′′(y) =
d

dy
g′(y) = f ′′(sin(y)) cos2(y)− f ′(sin(y)) sin(y) (2)

Consider the case x ∈ (−1, 1) and let x = sin(y). Observe that y ̸= kπ/2 for k ∈ Z. Since cos(y) ̸= 0, the
condition g′(0) = 0 implies that f ′(x) = 0, which shows that x is stationary for (P).
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Now, consider the case x = 1, which corresponds to y = π/2 + 2kπ for some k ∈ Z. Using that cos(y) = 0, we
have that

0 ≤ g′′(y) = −f ′(x) (3)

However, the normal cone at x is Nx[−1, 1] = {v ∈ R | v ≥ 0}, so we have that −f ′(x) ∈ Nx[−1, 1], which
shows that x is indeed stationary for (P).

The case x = −1 is handled similarly. ■

4. Now assume f is convex. Deduce that if y is a local minimizer of g then in fact y is a global minimizer of g.

Answer. Since y local minimizer for g, it is a SOC for problem (Q). By the previous exercise, this implies
that x = sin(y) is stationary for f . Since (P) is a convex problem when f is convex, it follows that x is the
global minimizer for (P). ■

2 Sphere-to-simplex lift

Let Sd−1 = {y ∈ Rd | ∥y∥ = 1} be the unit sphere in Rd and define the simplex

∆d−1 = {y ∈ Rd | yi ≥ 0 for all i and

d∑
i=1

yi = 1}.

Consider the sphere-to-simplex (or Hadamard) lift, given by

φ : Sd−1 → ∆d−1, φ(y) = y⊙2 = (y21 , . . . , y
2
d) (sphere-to-simplex)

We say that the lift φ satisfies the 2 ⇒ 1 property if for any smooth function f : E → R and g = f ◦φ, if y ∈ Sd−1

is a second order critical point for the problem miny′∈Sd−1 g(y′), then x = φ(y) is a stationary point for the problem
minx′∈∆d−1 f(x′).

Show that the lift φ satisfies the 2 ⇒ 1 property. You may find it easier to first treat the case d = 2.

Hint: The tangent cone of the standard simplex has the following expression:

Tx∆
d−1 = {v ∈ Rd |

d∑
i=1

vi = 0 and vi ≥ 0 for i /∈ supp(x)},

where for a point x ∈ ∆d−1, the support is supp(x) = {i | xi > 0}.
(This can be shown by using that for a convex set S, it holds that Tx S = Kx S, where the cone of feasible directions
Kx S is defined as Kx S = {α(y − x) | y ∈ S, α ≥ 0}. See Section 9.1 in these lecture notes for details.)

Answer. We start with some reminders from constrained optimization. Let S ⊂ E be a subset of a Euclidean
space. The set Tx S is a cone. The polar of a cone C is the set

C◦ = {w ∈ E | ⟨w, v⟩ ≤ 0 for all v ∈ C} (4)

We define the normal cone of of S at x as Nx S = (Tx ∆
d−1)◦. The following is a standard fact from constrained

optimization: if f : E → R is differentiable, we say that x∗ is stationary for the problem minx∈S f(x) if Df(x∗)[v] ≥ 0
for all v ∈ Tx∗ S. This is equivalent to −∇f(x∗) ∈ Nx∗ S. For details, see Chapter 7 in these lecture notes.
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In particular, for the standard simplex, it can be shown that the normal cone has the following expression

Nx∆
d−1 =

{
v ∈ Rd

∣∣∣∣ vi = λ for all i ∈ supp(x),
vi ≤ λ for all i /∈ supp(x)

for some λ ∈ R
}
.

We compute the (Riemannian) gradient ∇g(y) and (Riemannian) Hessian∇2g(y) of g at y in terms of the gradient
and Hessian of f . Let y ∈ M, x = φ(y) and ẏ ∈ Ty M. We have that

Dg(y)[ẏ] = D(f ◦ φ)(y)[ẏ] = Df(x)
[
Dφ(y)[v]

]
= ⟨∇f(x),Dφ(y)[ẏ]⟩ = ⟨Dφ(y)∗[∇f(x)], ẏ⟩.

Since Dφ(y)[ẏ] = 2diag(y)[ẏ], we obtain that the (Riemannian) gradient of g is

∇g(y) = 2Projy

(
diag(y)∇f(φ(y))

)
.

Therefore, the first order criticality condition is

∇g(y) = 0 ⇐⇒ there exists λ ∈ R such that [∇f(x)]i = λ for all i ∈ supp(x). (FOC)

Assume that y is a first order critical point and yi ̸= 0 for all i = 1, . . . , d. Then, by (FOC), we obtain that there
exists λ ∈ R such that −∇f(x) = λ1d. But since Nx∆

d−1 = {λ1d | λ ∈ R}, this shows that indeed x is stationary
for f . It remains to study the case when there exists some i such that yi = 0. For this, we use the second order
criticality (SOC) condition.

The point y ∈ Sd−1 is SOC if ⟨ẏ,∇2f(y)[ẏ]⟩ ≥ 0 for any ẏ ∈ Ty Sd−1. Take some smooth curve c on Sd−1 with
c(0) = y, c′(0) = ẏ and c′′(0) = 0, where c′′(t) is the intrinsic acceleration of c at t. Then, y is a SOC if and only if

d2

dt2

∣∣∣∣∣
t=0

g(c(t)) = ⟨∇2g(c(0))[c′(0)], c′(0)⟩+ ⟨∇g(c(0)), c′′(0)⟩ = ⟨∇2g(y)[ẏ], ẏ⟩ ≥ 0.

Let γ = φ ◦ c : (−ε, ε) → Rd. Since g ◦ c = f ◦ φ ◦ c = f ◦ γ, we can equivalently write the SOC condition as

0 ≤ d2

dt2

∣∣∣∣∣
t=0

f(γ(t)) = ⟨∇2f(γ(0))[γ′(0)], γ′(0)⟩+ ⟨∇f(γ(0)), γ′′(0)⟩ (SOC)

Take c(t) = cos(t)y+sin(t)v (check that this satisfies the requirements above!) and since γ(t) = c(t)⊙2, we have that

γ′(t) = 2c(t)⊙ d

dt
c(t) and γ′′(t) = 2

(( d
dt

c(t)
)⊙2

+ c(t)⊙ d2

dt2
c(t)

)
.

Pick some index i ̸= supp(y) and let ẏ = ei ∈ Ty Sd−1, since y⊤ei = yi = 0. Observe also that y ⊙ ẏ = 0. Then

γ′(0) = 2y ⊙ ẏ = 0 and γ′′(0) = 2(ẏ⊙2 − y⊙2).

That is, [γ′′(0)]k = −y2k if k ̸= i and [γ′′(0)]k = 1 if k = i. With this, (SOC) becomes

⟨∇f(x), ẏ⊙2 − y⊙2⟩ = df

dxi
(x)−

∑
k∈supp(y)

y2k
df

dxk
(x) ≥ 0 (5)

From (FOC), we have that there exists λ ∈ R such that df
dxk

(x) = λ for all k ∈ supp(y). Therefore, from Eq. (5), we
obtain

− df

dxi
(x) ≤ −λ = − df

dxk
(x), for any k ∈ supp(x).

This confirms that −∇f(x) ∈ Nx∆
d−1, so x is stationary for f on ∆d−1. ■
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